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A new exact analytical formula for the fifth partial virial coefficient, B!", of the additive
hard-sphere mixture (i.e., for four spheres having diameters of ¢, and one sphere having a
diameter of o,), for small diameter ratios (s = 6,/0,), is derived. The derivation method is
based on simple geometrical arguments and uses as the only input three first terms in the
density expansion of the radial distribution function.

Keywords: Statistical thermodynamics; Hard-sphere mixture; Virial coefficients.

The virial expansion in powers of density for the fluid is

z=1+Y Bp" (1)
n=2

where z = pV/(NkgT), kg is the Boltzmann constant, B,, are the virial coeffi-
cients and p is the number density, p = N/V (refs!?).

For a mixture, the virial coefficients are composition-dependent. For a bi-
nary mixture, the following equation is applicable

5,0 = 3 o @

i=0

where x; and x, are the molar fractions of particles 1 and 2, respectively.
For a hard-sphere mixture, the partial virial coefficients, B! (s), depend on
the hard-sphere diameters, o, and ¢,. Throughout this paper, we take the
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first diameter of the spheres, ¢;, as a unit of length. Thus, the values of
Bl (s) depend only on the diameter ratio, s = 6,/0;.

In principle, the virial coefficients can be calculated for any order. Unfor-
tunately, calculation of higher order coefficients becomes increasingly diffi-
cult, as both the number of integrals and their dimensionality rapidly
increase. Up to now, only the second and third virial coefficients for the
hard-sphere mixture have been exactly determined3*.

For the fourth virial coefficients, an analytical expression (B!') for the
partial coefficient, with three large spheres at diameters of 1 and one small
sphere at a diameter of s, was found only at a small diameter ratio, s <
2/N3 =1 = 0.1547 (ref.5)

3
Bl(s) = (nj [—959 _8l s 1625 27 6
6 56 56 35 S
12765 27 2L L gg2 +9s+1} 3)
40 8 4 4 4
and, due to a symmetry condition®
B(s) =s"B," 1 (1/ s) 4

we can also obtain B’ (s) for s > V3/(2 - V3) = 6.464.

Other exact analytical expressions are unknown. Values of B!’ (s) for
other diameter ratios and for higher virial coefficients, up to B,(s), are avail-
able from numerical integrations’-12,

The aim of this work is to propose a new method for the derivation of an
exact analytical expression for B\ (s), at small values of s. The possibility of
its extension to greater diameter ratios and higher virial coefficients is
briefly discussed.

THEORY

The dimensionless chemical potential of the infinitely diluted hard sphere
is obtained from Egs. (I) and (2) using a standard thermodynamic route,
giving

By (s) = zﬁBf,l‘(s)p"* ©)
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where u; (s) is the residual chemical potential of an infinitely diluted hard
sphere of diameter s in the system of spheres having diameters of 1 and =

1/(kgT).
The same chemical potential is related to the probability of the successful
insertion of a trial particle (diameter = s) in the NVT ensemble, P(s) 13

Buy (s) = —In[P(s)] . (6)
The probability, P(s), can be determined by
P(s) =1 - Vexe (5) 7)

where Vexc(s) is the volume of merged regions that are excluded to the cen-
tre of a trial particle by spheres (Fig. 1).
The excluded volume is given as

Vere (8) = Z Vil (5) = Y VL () + Y VE™ () - (8)
i<j i<j<k

where V! (s) is the volume excluded by the ith sphere, V."//(s) is the volume

exc exc

of the excluded intersecting regions of the ith and jth spheres, and so on.

P
F \.

\\D s \<
S J/” Je |

The volume excluded to the centre of a trial particle. The shadow region is the union of
spheres, with diameters equal to 1 + s, excluded to the centre of a trial particle
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The excluded volume of a single sphere is given by

exc

Vli(s) = 2—3"<1+ 9? ©)

and the volume of the intersection of excluded regions for two spheres is
given by
1+s

Vo) = 4njAVm(s,r)p(r)r2dr (10)

exc

where p(r) is the average probability density that the centres of two spheres
are at distance r and AV!2l(s,r) is the volume of the intersection of two
spheres, having diameters 1 + s, with centres at a distance of r< 1 + s

AV (s,r) :%(r+2+25)(r—1—s)2. (11)

The integration range is limited by two conditions
pn=0 for r<1
and
AVRl(s,) =0 for r>1+s.

For a diameter ratio of s < 2/v¥3 — 1, the intersection of excluded regions
for three or more spheres equals zero. This means that the term V""" ()
and the following terms in Eq. (8) may be omitted.

For an infinite system, the probability density, p(r), is equal to

g(r)

pir) = A (12)

where g(r) is the radial distribution function. Provided that we know the
radial distribution function, Eqs (6)-(12) give a simple way to obtain the
chemical potential at infinite dilution and, thus, the partial virial coeffi-
cients, B! (s).

The radial distribution function may be approximated by a density ex-
pansion having coefficients expressed as a sum of cluster integrals of the
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Mayer f function’?. When combined with Eqgs (6)-(12), the Oth order ap-
proximation

g =1 (13)
yields
2.3
B (s) = —1n[1—’6°(1+s)3p+ “7; (12 +15s + 652 +s3)p2} . (14)

The Maclaurin expansion of Eq. (14) in density, together with Eq. (5),
yields correct second and third partial virial coefficients, B\ (s) and B} (s),
respectively.

The 1st order approximation

8 =1 + pgy(s) (15)

where g,(s) is given as the convolution of the Mayer f functions

£1(5) = )/\( =%<r+4><r—2>2 (16)

is valid for r < 2. This leads to the exact formulae for partial virial coeffi-
cients up to Bl'(s).
The 2nd order approximation

8(r) =1+ pgi(s) + pgy(s) (17)

where g,(s) is also known analytically'#

8,0 = (%M+n+2m+%m> (18)

2
= (7 —63r5 +210r* + 315 —1806r% + 1645 —162) +
1260r

T 3 4, 41 3)\/72 ( 23 36) r
+—=|| ——=1" +—r1 3-r° 4| -—r+— |arccos| —— |+
2[( 280 420 15 35 N12 — 32
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+ (3 poo L 1o +2r—9j arccos rar-3 +
560 15 2 15 3% 2_3°
2
+ (3 O —2r+9) arccos| 7 +3 (19)
560 15 2 15 3% 2_3°

is valid for 1 < r < V3. This yields the exact analytical formula for the fifth
partial virial coefficient

B{''(s) = (n) {11268 (s+1° l:arcsin{mj - arcsin[ﬁ] +
; 6 175w 3 3

+ 276 (65s® +111s* +27s+17) | arcsin M —arcsin ﬁ —
8751 3(1-s) 3 )]
576

75m

(655 +279s% + 3635 +113) l:arcsin[\/g((?z)s)j - arcsin(s\6 ﬂ +
+5

3530 (s” +7s% —3s® —85s* +215s* +1233s% +1531s —1139) x
T

+

. [/3(s? +35-1)
x(s+1)° arcsm[ -
3W3-2s-s?

216 . V3(s+1)
- (23s* + 465 —49)(s +1)° arcsm(] -
875m 3W3-2s-s*

- 3530 (s7 +75° — 3s% —85s* + 2155” +8495” +763s +1933) x
T

s . \@(sz+s—3)]
X (s+1)° arcsin| ——————2 | —
[3\/3—23—32

_ 9 (9080s° + 25254s* + 232685 + 5843) arcsin(l) -~
3500n 3
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99 1, 297 . 2781 i, 135 o 20997 32958 , 3573
- s - st - s ——=5" - s° - s’ - s+
700 175 350 7 700 875 125

7074 s 5049 , 4234 ; 61773 , 19263 15997
+ s7 + st - st — s% - s— +

875 700 175 3500 1750 700
+i [(105s™ +1050s° + 2555s® —4760s” — 40954s° —108524s° —
612507

- 241510s* - 465800s* +413153s” +1599922s + 375323)V2 - 2s — s> +

+J2(204400s* — 54881452 — 17108285 — 375323)] . (20)

The derivation of Eq. (20) was carried out by very careful usage of the com-
puter algebraic system Maple!S.

RESULTS AND DISCUSSION

To verify the final results given by Eq. (20), several tests were performed.

Limiting behaviour at small values of s, which is discussed in detail in the

literature®, was fully reproduced. Values of B!"(s) were compared with re-

sults from the numerical calculation in Table I. New data presented here are

from results obtained recently by our calculations!?. Older data are the best

values obtained by various authors” 19, These results were found to coin-
TaBLE I

Comparison of the analytical formula for Bl'(s), with values obtained by numerical integra-
tion. Numbers in parentheses are estimated standard deviations

S Eq. (20) New data'? Old data
0.05 0.026588443 0.026587(2) 0.0266(3)’
0.1 0.043506981 0.043514(4) 0.04321(7)'°
0.15 0.066359196 0.066367(6) -

0.2 0.095857076 0.095860(6) 0.0960(1)°
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cide with each other, with deviations corresponding to the estimated un-
certainties of the numerical integration. Strictly speaking, formula (20) is
not valid for s = 0.2, because the intersection of excluded regions for three
spheres may exist. By analogy with the fourth virial coefficients!®, we can
expect that the contribution due to triple intersections may by neglected.
This assumption is confirmed by the observed agreement with numerical
integration.

The formula (20) for the fifth partial virial coefficient is substantially
more complicated than for the second, third and fourth virial coefficients,
being the 3rd, 6th and 9th polynomials in s, respectively. Nevertheless,
the Maclaurin series of Eq. (20) shows that it is very close to the 12th
polynomial in s. This is because the coefficients for powers of s equal to or
greater than 13 are at least two orders of magnitude smaller than for previ-
ous ones.

The proposed method of calculation of partial virial coefficients is limited
to a small diameter ratio, s < 2/3 - 1. In principle, this method could also
be extended to greater diameter ratios. This would require knowledge of the
intersection of three and four spheres, together with triplet and quadruplet
distribution functions of the pure hard-sphere system. Moreover, the calcu-
lation would involve three-fold and six-fold integration and is probably be-
yond the present state of art in computer algebra. On the other hand, the
method could be extended to higher virial coefficients if the higher terms
in the density expansion of g(r) are known. For example, the fourth term
will give the sixth partial virial coefficient.
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